Taller de buenas prácticas para la gestión de emisiones GEI a nivel comunal

26 Noviembre 2021 Descripción de casos

Descripción de proyectos tipo y casos de desarrollo, con la herramienta GACMO

- En esta sesión vamos a ver la herramienta GACMO, cómo se utiliza, y cómo nos puede ayudar a identificar opciones de mitigación y estimar su impacto.
- La herramienta no se encuentra disponible en idioma español. Para esta presentación se han traducido partes para facilitar la comunicación.
- Vamos a comenzar viendo las principales secciones de GACMO, para pasar a analizar en mayor detalle cómo estimar el impacto de diferentes opciones de mitigación.

GACMO se compone de diferentes pestañas

Bienvenido al Modelo de Costes de Reducción de Gases de Efecto Invernadero GACMO, versión de 10 de septiembre de 2021 Este modelo fue desarrollado por Joergen Fenhann, Colaboración PNUMA DTU, email jafe@dtu.dk, móvil: +45 2295 5113,

GACMO se utiliza para realizar un análisis de las opciones de mitigación de GEI para un país, sub-estado o región, para usarse en la Comunicación Nacional, la CDN o en un Plan de Desarrollo Bajo en Carbono.

Descripción general de cómo funciona el modelo:

Guía

El resultado del uso del Modelo GACMO es una tabla que proporciona una visión general del coste e impacto de diferentes iniciativas de mitigación, reflejadas en el formato de una tabla y una Curva de Ingresos por Reducción. El input necesario para que el modelo se ejecute es un balance de GEI para el país en cuestión.

¿Quién puede beneficiarse del uso del modelo?

Si su país no ha hecho un supuesto sin cambios (en inglés Business As Usual - BAU) sobre el año futuro deseado, puede utilizar la primera parte del modelo GACMO que calcula el supuesto sin cambios.

Si su país no ha calculado el escenario de mitigación, puede usar la segunda parte del modelo GACMO. En ese caso omita la primera parte e inserte el total de las emisiones de GEI del supuesto sin cambios (BAU) al final de la hoja "principal" deseada.

Si no ha realizado cálculos para todas sus opciones de mitigación propuestas, puede usar el modelo para completar sus cálculos.

kT to TJ Balance del Año Inicial Crecimiento Supuestos Info país Proyecciones 2025 Proyecciones 2030

main30 | main50

Proyecciones 2050

main2^r

Para esta presentación se han coloreado las pestañas para facilitar la explicación. Vamos a abrir el Excel juntos y ver rápidamente las pestañas de guía, y las pestañas en verde y azul

Introduction

En las pestañas Main(...) encontramos un sumario de opciones de mitigación.

Total GHG mitigation in	Comuna X	In 2025			
Tipo de acción de		Coste marginal de reducción		Emisiones reducidas	Investment
mitigación	Opción de reducción	US\$/tonCO2	Alcance del proyecto	t CO2/unit	Million US\$
Agriculture	Rice crop CH4 reduction	1,20	Rice crop CH4 red.(1000 ha)	2.566	0,0
	Zero tillage	-166,39	1000 ha	86	0,0
	Cover crops	81,04	1000 ha	1.490	0,0
	Nitrification inhibitors (1000 ha)	67,69	1000 ha	790	0,0
	Covering slurry stores (1 slurry store)	937,83	1 slurry store	0,20	0,0
	Fat supplementation in ruminants diets (%DM fat added)	80,50	%DM fat added	4.336	0,0
	Tobacco curing	-20,80	100 t tobacco/yr	562	0,0
Biomass energy	Rice husk cogeneration plants	-87,68	1 MW cogeneration	9.719	0,0
	Biomass power from biomass residues	-184,60	1 MW CHP plant	2.428	0,0
	Bagasse power	-341,74	100 kt sugar cane/year	6.791	0,0
CCS	CCS plant	203,82	1 MW	5.412	0,0
Cement	Clinker replacement	7,55	1000 tonnes cement/day	166.584	0,0
Coal bed/mine methane	Coal mine methane	-30,71	10 Mm3 CMM/year	37.353	0,0
EE households	Efficient residential airconditioning	-307,41	1000 Airconditioners	780	0,0
	Efficient lighting with CFLs	-321,07	1000 Bulps	38	0,0
	Efficient lighting with LEDs	-354,68	1000 Bulps	78	0,0
• main25 main3	0 main50 Gráfico MRV Agriculture Biomass energ	y CCS Ceme	ent Coalmine CH4 EE dom	éstica 📔 EE ser	vicio EE indu

Como se ve en esta imagen, se referencia una lista de opciones de mitigación.

Estas opciones se encuentran en las pestañas de la derecha.

Vamos a ver cómo se estiman las opciones y qué opciones hay disponibles.

- GACMO sigue el mismo enfoque para estimar todas las opciones de mitigación.
- Se definen dos opciones (dos escenarios):

Una opción de referencia (tecnología actual).
Una opción de reducción (tecnología de reducción de emisiones)

 Para cada una de las opciones, se requiere definir una serie de parámetros.

Estimación de impacto de medidas

- El alcance es común para ambos escenarios/opciones (si se reemplazan cien bombillas, son cien bombillas en ambos escenarios).
- GACMO utiliza como referencia proyectos CDM (www.cdmpipeline.org) y otras referencias relevantes disponibles. El usuario puede utilizar los valores incluidos como referencia, pero se alienta a que los usuarios modifiquen los valores para ajustarlos a la realidad local.

Estimación de impacto de medidas

Alumbrado eficiente con LEDs (1000 bombillas)								
Costes en	Opción	Opción	Incremento	<	Unputs generales:			
US\$	Reducción	Referencia	(RedRef.)		Tasa de descuento	7%		
Inversión total	10.000	15.000	-5.000		Precio medio de electricidad	0,20	US\$/kWh	
Vida de proyecto	4	4			Coeficiente de emisión de CO2-eq.	0,49	tonelada CO2-eq./M\	
Inversión ajustada	3.009	4.513	-1.504		Pérdida de red	18,6%		
O&M anual			0		Opción de reducción: LEDs		>	
Coste anual de electricidad	4.599	30.660	-26.061		W medio de LED lámparas	9,0	W	
Coste total anual	7.608	35.173	-27.565		Uso diario	7,00	horas	
					Importe anual de bombillas	1000	Bombillas	
Emisiones anuales (toneladas)	Toneladas	Toneladas	Reducción		Coste de LED	10	US\$	
Emisión de CO2-eq. de combustible	14	91	78		Electricidad para iluminación LED	23	MWh/año	
Otro				<	Opción de referencia: Bombillas incandescentes			
Emisión total de CO2-eq.	14	91	78		W medio de lámparas reemplazadas	60,0	W	
					Vida útil de un incandescente	0,4	años	
US\$/tonelada CO2-eq.			-354,68		Vida útil de un LED	3,9	años	
	•				Número de reemplazos / recambios	10,0		
Notas:					Precio por una bombillas incandescente	1,5	US\$	
Normalmente un LED tiene 100 Lumen/Vatio.			Electricidad para iluminación incandescente	153	MWh/año			
Sin embargo, está mejorando con 5 Lume	n/W/año, y "	Ultra LEDs" están ahora a 140						
Lumen/Vatio					Ahorro de electricidad para 1000 lámparas	130	MWh/año	

La parte izquierda contiene el cálculo y el resumen de resultados.

2

Información sobre la opción de referencia

Información sobre la opción de reducción

Información común

Opciones de mitigación disponibles

- Las opciones de mitigación disponibles se organizan en sectores CDM.
 - □ Agricultura
 - □ Transporte
 - Residuos
 - Bosques
 - Solar

3

- Eficiencia energética:
 - EE doméstica
 - EE Servicio
 - 🗅 EE industria
 - EE generación
- 🖵 ... y más

Opciones de mitigación disponibles

- En GACMO, las diferentes opciones de mitigación están disponibles dentro de cada pestaña sectorial.
- Podemos acceder a cada opción de mitigación dando clic en el menú o simplemente desplazándose hacia abajo.

3

Menu para las opciones domésticas EE (haga click en los links de más abajo)						
Aire acondicionado eficiente residencial (10	000 unidades)				
Alumbrado doméstico eficiente con LFCs (1	000 bombilla	<u>as)</u>				
Alumbrado doméstico eficiente con LEDs (1	LOOO bombilla	<u>as)</u>				
Alumbrado doméstico eficiente con LEDs re	eemplazando	LFCs (1000 bombillas)				
Frigorífico eficiente (1000 unidades)						
Cocinas de leña eficientes (1000 unidades)						
Cocinas de carbón eficientes (1000 unidade	<u>es)</u>					
Reemplazando cocina de leña con cocina GLP (1000 unidades)						
Cocina eléctrica eficiente (1000 unidades)						
Aire acondicionado eficiente residencial (1000 unidades)						
Costes en	Opción	Opción	Inci			
US\$	Reducción	Referencia	(Re			
Inversión total	130.000					

Energía Biomasa

Transporte

CCS

Cemento

EE doméstica

Vamos a ver dos ejemplos

1. Alumbrado público eficiente - tubos LED (1000 localizaciones)

• Podemos encontrar esta opción de mitigación de dentro de la pestaña "EE servicio". Todas las celdas están rellenas con valores por defecto. En general, los valores viene de proyectos CDM. Se suele referenciar en las notas debajo de la tabla (pero no en todos los casos). En amarillo se identifican las celdas a actualizar.

- Vamos primero a ver inputs generales.
 - Tasa de descuento:

Inputs generales:						
/MWh						
.//\						

Qué es? es el precio del capital. Nos indica cuánto vale ahora el dinero que utilizaremos en una fecha posterior. Supongamos que todo el dinero utilizado es dinero bancario, por lo que utilizaremos el tipo de interés bancario: 3%.

Vamos a ver dos ejemplos

- 1. Alumbrado público eficiente tubos LED (1000 localizaciones)
 - Precio medio de la electricidad:

Inputs generales:					
Tasa de descuento	7%				
Precio medio de electricidad	211	US\$/kWh			
Coeficiente de emisión de CO2-ec	0,49	tonelada CO2-eq./MWh			
Pérdida de red	18,6%				
	,				

El precio medio de la electricidad lo podemos extraer de fuentes locales, regionales o nacionales.

• Coeficiente medio de emisión de electricidad (grid emission factor):

Este factor de emisión representa las emisiones de consumir un KWh de electricidad de la red eléctrica. Este factor se puede extraer de una fuente nacional, regional o local. En esta fuente podemos encontrar valores de referencia: <u>https://www.iges.or.jp/en/pub/list-grid-emission-factor/en</u>

Vamos a ver dos ejemplos

- 1. Alumbrado público eficiente tubos LED (1000 localizaciones)
 - Pérdida de red:

Inputs generales:					
7%					
211	US\$/kWh				
0,49	tonelada CO2-eq./MWh				
18,6%					
	7% 211 0,49 18,6%				

Pérdidas en la distribución de electricidad que involucran emisiones. Vamos a dejar el valor por defecto. En caso de que existiese un valor nacional/regional/local sobre este parámetro, es conveniente usarlo.

Vamos a ver dos ejemplos

1. Alumbrado público eficiente - tubos LED (1000 localizaciones)

Sigamos con la opción de reducción y con la opción de referencia

Fíjense que hay variables comunes:

- El número de lámparas/bombillas
- El uso diario de esa lámpara
- Los costes de operación y
- mantenimiento

Es muy importante que esas variables comunes (que definen en alcance) sean consistentes en la opción de reducción y de referencia

Opción de reducción: tubos 100 W LED					
0&M		US\$/cambio de lámpara			
Actividad	1.000	localizaciones			
Coste de lámpara eficiente	162	US\$			
Vida útil de la lámpara	50.000	horas			
Vida útil de la lámpara en años	11,4	años			
Potencia de la lámpara	100	\vee			
Uso diario	12	horas			
Uso anual de electricidad	438	MWh			
Opción de referencia: lámpara de sodio 250 W					
0&M		US\$/cambio de lámpara			
Actividad	1000	localizaciones			
Coste de lámpara de sodio	75	US\$			
Vida útil de lámpara en horas	24.000	horas			
Vida útil de lámpara en años	5,5	años			
Recambios de lámpara necesarios	1,3	veces			
Tarifa de descuento de lámpara	0,1%				
Potencia de lámpara de sodio	250	\vee			
Uso diario	12	horas			
Uso anual de electricidad	1095	MWh			

Vamos a ver dos ejemplos

Ejemplos

1. Alumbrado público eficiente - tubos LED (1000 localizaciones)

Cálculo y sumario (parte izquierda):

La información que hemos introducido en la tabla anterior es utilizada para hacer cálculos de coste y de emisiones para la opción de referencia y la opción de reducción.

Esto nos da un coste en USD/tonelada reducida → costes marginales de abatimiento.

Alumbrado callejero eficiente - tubos LED (1000 localizaciones)					
Costes en	Opción	Opción	Incremento		
US\$	Reducción	Referencia	(RedRef.)		
Inversión total	162.000	90.509	71.491		
Años de vida del proyecto	7	7			
Inversión ajustada	30.060	16.794	13.265		
O&M anual			0		
Coste anual de electricidad	92.418.000	231.045.000	-138.627.000		
Coste total anual	92.448.060	231.061.794	-138.613.735		
Emisiones anuales (toneladas)	Toneladas	Toneladas	Reducción		
Emisión de CO2-eq. de combustible	261	653	392		
Otras emisiones					
Emisión total de CO2-eq.	261	653	392		
US\$/tonelada CO2-eq.			-353733,4		

Vamos a ver dos ejemplos

2. Paneles solares – instalación grande 1MW potencia

La opción de mitigación se encuentra en la pestaña "Solar"

La tasa de descuento, el precio de la electricidad y el coeficiente medio de electricidad (grid emisión factor) ya los hemos utilizado.

Introduzcamos los mismos valores; es

importante que utilicemos la misma información común para que los resultados sean comparables. Fíjense que en GACMO estos valores están en otra pestaña → supuestos, que contiene todos los valores comunes a las diferentes acciones.

Fíjense que las celdas no sombreadas en amarillo se calculan automáticamente.

Inputs generales:						
Tasa de descuento	7%					
Precio de la electricidad	0,20	US\$/kWh				
Coeficiente medio de emisión de elec	0,49	tCO2/MWh				

Opción de reducción: Solar PV							
Potencial instalada - solar PV	1,0	MW					
Inversión por kW	1000	US\$/kW					
Horas diarias de sol	5	hours					
Factor de capacidad anual	1825	Full time hours					
Factor de eficiencia	1						
O&M	1,0%	de la inversión					
Producción eléctrica esperada	1825	MWh					
Coste de la electricidad producida	0,057	US\$/kWh					
Opción de referencia: No se instala solar (mix actul de producción)							
Electricity production	1825	MWh					

Vamos a ver dos ejemplos

2. Paneles solares – instalación grande 1MW potencia

De nuevo tenemos el cálculo y el coste marginal de reducir emisiones con esta tecnología.

Fíjense que a la derecha de la tabla, tenemos dos tablas equivalentes para 2030 y 2050. Esto se realiza para actualizar los valores de referencia en caso de que creamos que van a ser distintos.

Solar PVs, red grande, potencia de 1MW - 2025					
Costes en	Opción	Opción	Incremento		
US\$	Reducción	Referencia	(RedRef.)		
Inversión total	1.000.000				
Proyecto vital	20				
Inversión nivelada	94.393		94.393		
O&M anual	10.000		10.000		
Coste anual de electricidad		365.000	-365.000		
Coste total anual	104.393	365.000	-260.607		
Emisiones anuales (tonelad	Toneladas	Toneladas	Reducción		
Emisión de CO2-eq. de com	bustible	886	886		
Otro					
Emisión total de CO2-eq.	0	886	886		
US\$/tonelada CO2-eq294,1					

Gracias!!